Ensemble Minimax Estimation for Multivariate Normal Means
نویسندگان
چکیده
This article discusses estimation of a heteroscedastic multivariate normal mean in terms of the ensemble risk. We first derive the ensemble minimaxity properties of various estimators that shrink towards zero. We then generalize our results to the case where the variances are given as a common unknown but estimable chi-squared random variable scaled by different known factors. We further provide a class of ensemble minimax estimators that shrink towards the common mean.
منابع مشابه
Minimax estimators of a normal variance
In the estimation problem of unknown variance of a multivariate normal distribution, a new class of minimax estimators is obtained. It is noted that a sequence of estimators in our class converges to the Stein’s truncated estimator.
متن کاملMinimax estimation of multivariate normalmean under balanced loss function 1
This paper considers simultaneous estimation of multivariate normal mean vector using Zellner's(1994) balanced loss function when 2 is known and unknown. We show that the usual estimator X is minimax and obtain a class of minimax estimators which have uniformly smaller risk than the usual estimator X. Also, we obtain the proper Bayes estimator relative to balanced loss function and nd the minim...
متن کاملTruncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space
Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...
متن کاملEstimation of the mean vector in a singular multivariate normal distribution
This paper addresses the problem of estimating the mean vector of a singular multivariate normal distribution with an unknown singular covariance matrix. The maximum likelihood estimator is shown to be minimax relative to a quadratic loss weighted by the Moore-Penrose inverse of the covariance matrix. An unbiased risk estimator relative to the weighted quadratic loss is provided for a Baranchik...
متن کاملAdaptive Bayesian multivariate density estimation with Dirichlet mixtures
We show that rate-adaptive multivariate density estimation can be performed using Bayesian methods based on Dirichlet mixtures of normal kernels with a prior distribution on the kernel’s covariance matrix parameter. We derive sufficient conditions on the prior specification that guarantee convergence to a true density at a rate that is minimax optimal for the smoothness class to which the true ...
متن کامل